7 research outputs found

    Bond-forming reactions between the molecular oxygen dication and small organic molecules

    Get PDF
    The reactions of O22+ with CH4, C2H2 and C2H4 have been investigated for the first time, using a position-sensitive coincidence technique, at centre-of-mass collision energies close to 4 eV. The experiments show these interactions yield a wide variety of products which involve the formation of new chemical bonds. The mechanisms of these bond-forming reactions have been investigated by examining the correlations between the velocities of the reactant and product ions which are revealed by the coincidence data. Many of the bond-forming reactions occur via the stripping of an atom (or group of atoms) from the neutral by the O22+ reactant, while other reactions clearly involve the initial formation of a collision complex which then fragments to form the detected products

    Stable Lithium Argon compounds under high pressure

    Get PDF
    High pressure can fundamentally alter the bonding patterns of chemical elements. Its effects include stimulating elements thought to be “inactive” to form unexpectedly stable compounds with unusual chemical and physical properties. Here, using an unbiased structure search method based on CALYPSO methodology and density functional total energy calculations, the phase stabilities and crystal structures of Li−Ar compounds are systematically investigated at high pressure up to 300 GPa. Two unexpected Li(m)Ar(n) compounds (LiAr and Li(3)Ar) are predicted to be stable above 112 GPa and 119 GPa, respectively. A detailed analysis of the electronic structure of LiAr and Li(3)Ar shows that Ar in these compounds attracts electrons and thus behaves as an oxidizing agent. This is markedly different from the hitherto established chemical reactivity of Ar. Moreover, we predict that the P4/mmm phase of Li(3)Ar has a superconducting transition temperature of 17.6 K at 120 GPa

    An endangered seahorse selectively chooses an artificial structure

    Get PDF
    The development of a residential marina estate within the Knysna estuary, South Africa, introduced Reno mattresses (horizontal wire cages filled with rocks) as a novel habitat for the endangered Knysna seahorse Hippocampus capensis. Consistently high seahorse densities on these artificial structures, despite the availability of seagrass habitat, begged the question of whether this habitat was chosen by the seahorse in preference to natural vegetation. An in situ habitat choice experiment was conducted which focused on the choice made by adult H. capensis between natural vegetation (Zostera capensis) and artificial (Reno mattress) habitat within a choice chamber. Seahorses were significantly more likely to move away from Z. capensis onto a Reno mattress structure or remain on this structure. This study concludes that higher H. capensis densities on Reno mattresses within Thesen Islands Marina are owing to some positive feature of this habitat and the underlying processes responsible for the choice made by this species (additional food, holdfasts, protection) can now be investigated

    Trends in Archaeological Simulation

    No full text

    Computational molecular spectroscopy

    No full text
    corecore